“The Code That Controls Your Money”
Published by Wealthsimple Magazine

MONEY & THE WORLD

NOTE: This article is recreated here to be accessible to Americans as the original was only
accessible in Canada... so, if you did not own a VPN app, you were unable to read it. I think
it is a VERY good and VERY important article on COBOL.

COBOL (common business-oriented language) is defined as a standard programming
language developed by a consortium CODASYL (Conference/Committee on Data Systems
Language) in 1959 to support business and financial applications.

iy spiceworks

KEY COBOL FEATURES

Global business
language

Easy readability

Portable
— language

Seamless integration
with modern systems

Evolving
language

Page 1 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

The Code That Controls Your Money

Written By Clive Thompson on November 10, 2020

COBOL is a coding language older than Weird Al Yankovic. The people who know how to
use it are often just as old. It underpins the entire financial system. And it can’t be removed.
How a computer language controls the financial life of the world.

When Thomas first started programming, it was 1969. He was a kid just out of high
school in Toronto, without any particular life goal. His father was a carpenter, but good luck
following in his family’s footsteps; Thomas was all thumbs. “My father knew I couldn’t
hammer two pieces of wood together,” he laughs.

So his mother suggested something weird and newfangled: What about... computer
programming?

Computers, in 1969, were still strange new curiosities, the size of big cabinets. But
companies around the world were realizing they were invaluable for any task that required
a lot of rapid-fire accounting, like tallying up payroll. Jobs were on offer to anyone who
could learn even a little coding. So Thomas found “some fly-by-night, little pop-up school”
in downtown Toronto, and over the next two months, learned the hot computer language of
the day: COBOL (Common Business-Oriented Language).

After he graduated, he got hired in the check-sorting department of a major Canadian bank.
(He doesn’t want me to name it, banks are secretive; “Thomas,” I should mention, is a
pseudonym, if you hadn’t guessed that already.) Thomas wasn’t yet a programmer for the
bank then, but over the next few years he made it clear he wanted to be, and his employer
paid for him to do a bunch of honest-to-goodness college courses in coding, and in 1978 he
began a long career at the bank as a programmer.

Thomas loved it. It was like constant puzzle-solving, a game of mental chess. He'd sit at his
desk, writing out his code by hand, then give it to a “punchcard operator” who’d put holes
in cards to represent his programming instructions. Twice a day they’d feed those cards
into the huge “mainframe” computers at the bank. It would take hours for Thomas to find
out if his code had actually worked correctly, or whether he’d made a goof that grounded
things to a halt. If he did, he’d pore over the error statements, rewrite the COBOL, and try
again.

Over the next few years, Thomas became good at COBOL and wrote thousands of
invaluable lines of code. When the bank issued payments, it was his code, every day,
helping them tally it all up correctly. As the '70s and '80s and '90s wore on, he and his
coder colleagues probably wrote tens of millions of lines of COBOL. There’s one system he’s
particularly proud of, a lightning-fast program that can process “anywhere between three
and five million transactions a day. That's my baby!” He wrote his first bits of that program
in 1988.

And the thing is that the code is still running today.
Page 2 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

Thomas retired from the bank in 2007 at about 60, and when he left, the bank was still
relying on the system, which by then was 20 years old and written when Thomas had a lot
more hair and when Phil Collins’s “Groovy Kind of Love” was a chart-topping hit. These
days, the code is over three decades old. It’s still crunching millions of records a day.
Indeed, he believes most of the code he and his peers wrote back in the day is still running
because the bank can’t function without it.

In fact, these days, when the phone rings in the house Thomas retired to — in a small town
outside of Toronto — it will occasionally be someone from the bank. Hey, they’ll say, can
you, uh, help... update your code? Maybe add some new features to it? Because, as it turns out,
the bank no longer employs anyone who understands COBOL as well as Thomas does, who
can dive in and tweak it to perform a new task. Nearly all the COBOL veterans, the punch-
card jockeys who built the bank’s crucial systems way back when, who know COBOL inside
and out — they’ve retired. They've left the building, just like Thomas. And few young
coders have any interest in learning a dusty, 50-year-old computer language. They’re much
more excited by buzzier new fields, like Toronto’s booming artificial intelligence scene.
They’re learning fresh new coding languages.

So this large bank is still dependent on people like, Thomas, who is 73, to not only keep
things running, but add new features and improvements.

Will his COBOL outlive him?
“Probably.”

COBOL democratized coding. Companies
could take everyday people and train
them to be useful COBOL programmers in
a few months.

That bank is not alone. COBOL programs — some written so long ago that colour TV
wasn’t even a thing yet — are everywhere in our daily lives.

CONSIDER: Over 80% of in-person transactions at U.S. financial institutions use
COBOL. Fully 95% of the time you swipe your bank card, there’s COBOL running
somewhere in the background. The Bank of New York Mellon in 2012 found it had
112,500 individual COBOL programs, constituting almost 350 million lines; that is probably
typical for most big financial institutions. When your boss hands you your paycheck, odds
are it was calculated using COBOL. If you invest, your stock trades run on it too. So does
health care: Insurance companies in the U.S. use “adjudication engines’” — software
that figures out what a doctor or drug company will get paid for a service — which
were written in COBOL. Wonder why, when you're shopping at a retailer you will see a
clerk typing into an old-style terminal, with green text on a black background? It’s because
the inventory system is using COBOL. Or why you see airline booking agents use that same
black screen with green type to change your flight? “Oh, that’s COBOL — that’s definitely
COBOL,” laughs Craig Bailey, a senior engineer at Faircom, a firm that makes software to
help firms manage those old systems.

Page 3 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

No one quite knows how much COBOL is out there, but estimates suggest there are as
many as 240 billion lines of the code quietly powering many of the most crucial parts of our
everyday lives. “The second most valuable asset in the United States — after oil — is
the 240 billion lines of COBOL,” says Philip Teplitzky, who'’s slung COBOL for decades
for banks across the U.S.

We're often told that tech thrives because of its new, pioneering innovations — its
willingness to do bold new things with code, to “move fast and break things,” as a young
Mark Zuckerberg famously plastered on the wall at Facebook. And it’s certainly true that
every day we see wild new code released, written in fresher, newer languages. If you've
seen that crazy new Al that can write sentences like a human, its creation relied on Python,
the well-known new computer language. When Facebook unleashes some new features on
its browsers’ app, the coders are often using JavaScript, another hot one.

But in older, massive industries central to the economy? COBOL'’s still omnipresent.
It makes it hard to innovate. How can you tinker, bolt on new features, using an ancient
language that energetic young coders have no interest in? If big old banks aren’t the firms
pushing forward with services like Venmo or Square or other fizzy “fintech” products, it
would follow that COBOL is part of the problem. But if that’s the case why, exactly, is
Thomas still being dragged out of retirement to keep it alive? Why can’t we do without it?

It’s partly because COBOL got there first — and was a tool fit perfectly for its
task. COBOL was, in many ways, the spark that lit our modern computer age.

Programmers began devising COBOL in 1959. When it was finally released ten years later
in 1969, it was the first language to make computers widely useful for everyday life. In the
late '50s, computers had just left the “experimental” stage. Everyday companies had begun
pondering whether having their own computer to crunch numbers could be valuable. The
problem was, before COBOL came along, coding was cryptic and difficult to learn.
Programmers often wrote software using some variant of what are called “assembly”
languages, where the commands could be awfully abstruse. (For example, the command
“LXA A,K” means “take the number loaded into location A of the computer’s memory and
load it into the ‘index register’ K.”) Worse, computer makers often devised their own
special languages for their computers. If you wrote some great code for a machine, it
couldn’t run on a computer made by another company.

A new generation of ambitious programmers thought this was crazy. One was Grace
Hopper, a rear admiral in the U.S. Navy — who'd cut her teeth on an early experimental
computer — and a firecracker of a personality. (She’s the one who popularized the phrase:
“It’s easier to ask forgiveness than ask permission.”) Hopper thought programming
languages ought to more closely resemble English so that they’d be easier to learn and to
read. In 1955, she devised a language called “FLOW-MATIC” that aimed to do just that; to
move a number from location A to location D, for instance, you’d simply write “TRANSFER
ATOD".

In 1959, a computer programmer named Mary Hawes decided her industry needed to
devise a language that would be as easy to write as FLOW-MATIC, and one that could run
on any machine. She assembled a committee of experts — including many from the nascent

Page 4 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

business-computer industry — to start creating the language, working together under the
Defense Department. The goal was to make a language that the average corporate manager
at a company could read and understand, even if they weren’t trained as a programmer.

That decade of work — heavily propelled by many female superstar contributors, such as
the computer science pioneer Jean Sammet — produced a language, much like FLOW-
MATIC, that was easy on the eyes. To add two numbers, for example, you could write “ADD
Num1, Num2 GIVING Result”. To run a calculation three times, you'd write “PERFORM 3
TIMES.”

“It’s really hard to overstate the importance of COBOL,” says Mar Hicks, associate
professor of history at the Illinois Institute of Technology and author of Programmed
Inequality. “It was doing something absolutely critical in computing. It was filling this niche
that had gone unfilled in the early years of computing. And it changed the way that you
could think about writing programs.”

It changed who could write it, too. COBOL democratized coding; companies could take
everyday people and train them to be useful COBOL programmers in a few months, and to
become experts in a year or two. This was crucial given that companies desperately needed
more warm bodies to write software.

“You could pick people up out of the street,” says Jon Pyke, a British coder who learned
COBOL back in the 1960s, “and basically and teach them how to do it.”

That older code can not only be good,

but in crucial ways superior to newer
code, is at odds with a lot of Silicon Valley
myth-making.

The other thing about COBOL is that it was fast. It had been designed specifically to do
mammoth amounts of “transactions” really quickly. If you're a retail chain, you need to
count up your sales and recalculate your inventory every night. And you don’t have much
time to do it — perhaps a couple of hours in the evening, after your business day ends,
while your computer staff works late.

Banks, too: During the day, they're frantically accepting transactions, requests from
customers to take money in and out of their accounts. At night they have a few hours to
balance all those books. If you’ve wondered why a check you've deposited won't clear for a
while, it’s partly because both banks need to run their mammoth COBOL jobs after the day
staff has left. At Citibank, Teplitzky’s code ran through a huge center with 248 mainframe
computers.

“You have a six-, eight- hour window where you have to do, if you'll pardon the expression,
a shitload of work — you have to do all transactions in a certain order,” he tells me. “It
takes big, big iron to run a billion transactions through a six-hour batch window. It’s a
screamer.”

Page 5 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

COBOL was optimized for precisely that task: processing gazillions of transactions.
Computer languages often have a sort of cognitive or creative bias; they were each created
with a particular type of task in mind. Python is excellent for data science and Al; Fortran
was created to render math formulas in code; JavaScript was created to help programmers
make websites interactive.

COBOL? It was customized for working on those mainframe computers, which themselves
were designed specifically to crunch bazillions of transactions, reading and writing data
streams at a brisk pace. It was like a high-octane fuel designed specifically for a sports car.
Over the years, COBOL “compilers” — the software that takes the English-like syntax of
computer code and transforms it into the ones and zeros that a computer chip can execute
— were refined more and more, so that COBOL’s “compiled code” became exceptionally
speedy. Which means that part of the reason COBOL underlies so many crucial things we do
is because it’s actually pretty good at it.

“They’ve had 50 years to get this right,” notes Bill Hinshaw, who runs COBOL Cowboys, an
agency that provides COBOL programmers.

The sheer age of those COBOL systems is, oddly, actually something that works in
their favour. Because they're old, they have been relentlessly debugged. When a program
is first written, it inevitably has problems. Sometimes it’s a typo, a misplaced command,;
other times, the user does something the programmer never expected, and things crash.
When you get a new app, if it's buggy and crash-prone, this is why: the creators sent it out
into the world with lots of these little flaws. It can take days, weeks, or years to discover
all the problems.

But those COBOL programs that run the world? They’ve had decades for coders and users
to uncover all the problems, and to fix them.

Adriana Stern (not a pseudonym this time!), another coder I spoke to who worked for large
Canadian banks, started her career in the ‘80s, when the systems were still ironing out
some odd bugs. One day she found that a particular bank terminal in Quebec was sending
the system accented letters — and the original programmer had never expected that to
happen.

“So when the system tried to interpret it, it would choke,” she tells me. In another case, a
different COBOL program kept crashing, and she finally realized it was because a new
customer’s name had a single quotation mark in it — which the program accidentally
thought was an instruction saying “the end of the data set,” grinding the code to a halt.

Stern worked for banks for 30 years, and she figures 85% of her work wasn’t writing bold
new features for the bank — it was “maintenance.” Think of it like a sort of digital
plumbing, fixing leaks, making everything run gradually more and more smoothly.

“It was hard work — you’re burning the candle at both ends,” she told me.

This is precisely why those COBOL systems are now so reliable. They’ve been debugged
more than just about any code on the planet. A fizzy new TikTok-style app can launch
and enjoy massive popularity even with a lot of bugs. If the “like” count on your latest

Page 6 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

post is slightly wrong, eh, no big deal. In contrast, if a major retailer miscounts its
inventory, or a bank suddenly can’t send money? That causes financial chaos at scale.

“The entire GDP of the world is in motion in the [banking] network at any moment in time,”
as Teplitzky notes. “A bank turns over twice its assets every day, out and in. A clearing bank
in, say, New York, it could be more... So a huge amount of money is in motion in the
network and in big backend systems that do it. They can'’t fail! If they fail, the world

ends. The world ends.”

COBOL is not merely fast; it's also “stable, stable, stable”, as Thomas tells me. One of
the processes he developed takes, every month, a file of about 2.4 million
government pension and puts the proper amounts in people’s bank accounts. “We
verify them and check them in 11 minutes. It hasn’t failed in 20 years.”

This idea — that older code can not only be good, but in crucial ways superior to newer
code — is at odds with a lot of Silicon Valley myth-making. Venture capital-backed
startups [like Elon Musk] usually tout the shiny and novel. Founders do not prance
around boasting about how old their codebase is. Quite the opposite: They brag
about their code being cutting-edge, pounded out in all-night sessions by bleary-eyed
genius 21-year-olds. But as nearly every programmer will tell you, the newer and
more recently written the software, the more likely it is to be a hot mess of bugs.

A good example of this could be witnessed during the pandemic. In the early days of
Covid-19, businesses shut down en masse. Laid-off employees swarmed online to apply
for unemployment benefits, and the websites for many state governments crashed
under the load. In New Jersey, the governor told the press that their COBOL systems
desperately needed help to deal with the new demands. “Literally, we have systems that
are 40-plus-years-old,” he noted.

But technologists who were working behind the scenes to fix the problems knew that
the number-crunching COBOL wasn’t the problem. That old stuff was working fine.
No, it was the newer stuff that had crashed — the programs powering the website itself.

“The thing that went bananas was this web application in between the mainframe and the
outside world. That was the thing that sort of fell apart,” says Marianne Bellotti, a
programmer and writer who worked for years on government systems, and who observed
New Jersey’s system. But it’s too embarrassing, as the historian Hicks points out, to admit
that “oh, our web systems broke down.”

Bellotti’s seen the same thing happen with other government agencies, like the IRS.
She was called in once to help with an IRS web app that wasn’t working. When they
investigated, they found that, indeed, the problem was in newer programs, “this chunk of
poorly written Java code”. The mainframe running COBOL, in contrast, was racing
along like a Ferrari.

“The mainframes,” she says, “were responding within milliseconds.”
Being “stable” and old, though, can create a paradox — a curse of success. Because
when code runs nicely without anyone needing to check up on it, eventually people

Page 7 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

drift away. They stop looking at it, stop inspecting it. And that means they stop
understanding how, precisely, it works.

Certainly, they know that it works. Hey, it’s functioning every day, processing millions of
transactions in a snap! But nobody quite knows why or how. COBOL has become an
inscrutable mystery, a daemon that performs its tasks dutifully, but in a manner no
one quite comprehends.

This can become a big problem when, years later, you really would like to change
something or add a new feature.

Dave Guarino saw this up close. He’s a software developer who worked for years for Code
For America, a nonprofit that takes talented coders and gets them to help governments
update their ancient services. A few years ago he was helping write a new web app so that
Californians could more easily apply for food stamps. The web app floated on top of
California’s older software systems, as it were; users would interact with the app, and it
would pass along their requests to the decades-old code running on California’s
mainframes.

And that’s where a problem occurred. At one point, his team wanted to build a way for food
stamp recipients to book a meeting with a government official. The old California systems
already had a section that would accept a request like that. But in the field where you’d
input “when are you free to meet?” the older system only let you type 40 characters — and
it wouldn'’t let you use hyphens, so you couldn’t use a short form of language, like “M-W,” to
show you were free Monday through Wednesday.

What a pain, Guarino thought. So he met with the person who managed that old software
system. “Unfortunately, yes, those are real constraints,” the guy told him. And it was a
COBOL problem; it had been written decades ago. “So what can you do? Can you make the
field bigger or whatever?” Guarino asked. “And he was just like, straight up — no! There’s
nothing we can do.” That COBOL code — nobody was ever going to touch it. The state
didn’t have enough money to pay for the enormous staff time it'd take to dive back into that
codebase.

They were also likely terrified that if they tried to change something crucial, they’d
break it. This is the other paradox of COBOL'’s success. Because it’s fast and it’s stable, over
the years and decades, governments and banks grew to rely on those old systems. So
even if you want to change them, it’s too dangerous to try. At the bank Stern worked at,
you could lose hair over the stress of tinkering with truly ancient, mission-critical code.

“It was a high level of risk to fix things because you could damage something that was
already working,” she tells me. So most of the time, instead of intensively rewriting old
code, they’d just add small new bits of code, patching things around the edges. “People kept
adding on little pieces and little pieces, and it started to look like a little Frankenstein,” she
laughed. Which, of course, only made the system potentially more inscrutable and messy to
later generations.

Very, very occasionally, though, some design decision made decades ago that turns out
to be so truly awful that banks and companies need — suddenly, in a panic — to dive

Page 8 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

in and gut renovate genuinely old COBOL. This is what happened with the infamous
“Y2K bug”.

The Y2K bug emerged from an old design decision. When the early COBOL programmers
wrote dates into their software, they used two digits: 1971 was “71”, for example. That was
because the machines back in the '60s and '70s had very little storage room in their
memory. Removing two characters was a big deal. "All programs were very memory
conscious — every byte used to be expensive,” as Thomas tells me. Plus, the coders in the
’60s and '70s never dreamed their software would still be in use 30 years later, when the
year 2000 approached.

But as 2000 drew near, the two-digit dates became a huge dilemma. In the new millennium,
the COBOL software wouldn’t know whether “00” meant 2000 or 1900. If a bank calculated
interest on a deposit made on “01”, it might wrongly assume the deposit was made in 1901,
and issue the customer 99 years of free interest. A huge number of bank and retail and
payroll transactions all rely on dates, so billions of lines of programs needed to be updated.
As 2000 approached, banks called their old-timers out of retirement, paying them to pore
through the codebases, find every place dates were used, and fix things.

“We spent two-and-a-half years prepping for Y2K,” Thomas chuckles. “That’s one of the
reasons that a lot of the programing guys like me know our systems so well. Because we
had to go through every program.”

Even so, at Thomas’s bank, they didn’t have time to truly fix the problem. In some cases,
banks and firms didn’t actually change the code to use a full four-digit date like “2016”.
Instead, they used a hack: a “sliding rule.” They’d pick a year far enough in the future, like
2045, and make it the new breakpoint. So if the COBOL sees a two-digit date that’s greater
than 45, it assumes it’s in the 1900s — so, "87“ means 1987. And if it sees a number lower
than 45, it assumes it's 2000s — so, “33“ means 2033.

This means, as Thomas notes, that the Y2K problem isn’t, for them, entirely fixed. They
just kicked the can down the road. Come 2045, they may well be in a panic again. Which
means that still more COBOL will need to be fixed by COBOL experts.

Assuming any are still alive. Craig Bailey, of the software firm Faircom, was working with
some clients to help them try to migrate off their old COBOL systems. They’d work with the
client, picking the brains of the older, retired employees who originally wrote the systems
— but have occasionally had an old-timer die in the middle of the process.

“Literally, we get a call on a Monday morning saying, ‘Oh my god, project’s on hold — so-
and-so passed away,” Bailey says.

A paradox of COBOL'’s success is that
because it's so stable, even if you want to
change it, it's too dangerous to try.

Page 9 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

Banks need to hope that those old-timers hang on as long as possible. Because there
aren’t a lot of new young Kids learning COBOL these days.

“We get calls from companies all [the] time, saying, ‘Hey do you have anybody who’s got
any skills in COBOL?’ They’re desperate,” says Marilyn Zeppetelli, a former IBMer who
worked on their mainframes, and who now is a professor at Marist College.

Marist is one of the few universities that regularly teaches COBOL. Many computer
science programs don’t, or certainly don’t, promote it. Indeed, the academe has long
snubbed COBOL. When the language took off in the '70s, elite computer scientists were
scornful, arguing that COBOL encouraged terrible styles of coding that were falling out of
favour. One example was the “GOTO” statement: COBOL lets you tell the program to
suddenly jump from one line to another, say from line 899 to line 217. To be fair, the
computer scientists had a point! This type of coding produces janky, disorganized
programs that can be onerous to read (“spaghetti code,” as they call it), and languages that
came after COBOL mostly abandoned GOTO. Either way, the libel stuck. For people serious
about pushing the frontiers of computing, COBOL was a loser’s language, a backwater.

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a
criminal offence,” as the famous computer scientist Edsger Dijkstra wrote in 1975.
COBOL was more of a working-class language, a blue-collar intrusion into the
priesthood of coding. Plus, When cheaper desktop-sized PCs arrived in the '80s, they
became the exciting new place to run code. Anyone could have one on their desk; learning
COBOL required you to have access to a huge mainframe computer, which were mostly just
at banks or major retailers. “When the smaller and mid-range machines really took off in
popularity, [universities] moved all their education to those platforms, and the mainframe
kind of fell by the wayside,” Zeppetelli notes. These days, smartphones have made COBOL
even less relevant to students: “It just doesn’t seem as sexy as some of the other
platforms.”

With a small incoming talent pool, many banks and governments and retailers long ago
began to rely on outsourced COBOL labour. They keep a small core of coders on staff
who know the language, and when they need something new written, hire firms that have
phalanxes of COBOL coders, like Bill Hinshaw’s “COBOL Cowboys”, or firms in India.

Some firms, worried that it'll be too hard to find COBOL adepts in the years to come, try to
rewrite their entire system in a new language. It is nearly always a hellish task: You
have to think of every single thing your complex, decades-old software does, and recreate
each tiny step in a new language. Three years ago the New York Times rewrote its COBOL-
based newspaper-circulation system in Java; it was successful but took longer than
expected due to the “vexing” challenge — in the coders’ words — of making sure the
new system did what the old one did.

And they were the lucky ones. The Commonwealth Bank of Australia tried to rewrite a
core system in a fresh language; the project cost twice as much as they expected, $1
billion in Australian dollars. Len Santalucia, the longtime mainframe expert, once worked
with the financial institution DTCC to investigate the possibility of converting their COBOL
to Java.

Page 10 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

“They probably have about seventy-five million lines of COBOL code,” he tells me,
“and they found out that it would cost them so much that it would take, maybe, a
couple of lifetimes to recover. It was ridiculous. And they have more money than
God.”

So the banks shrug, and figure, screw it. If it ain’t broke, don’t fix it. Keep the old COBOL
running. “These programs have been running day in, day out, 24 /7 for 30 and 40 years. So
why would we change it?” as Thomas says.

And in the meantime, the banks just try to encourage as many people to learn COBOL as
possible. “You’d have a job for life,” Thomas laughs.

The problem for banks, though, is that while their COBOL may be stable, their customers’
expectations aren’t. As you probably realize, the landscape of the financial industry is
shifting quickly. Transactions are increasingly happening on Venmo-style apps that let
people ping money to friends; services like Coinbase let people buy cryptocurrency; there
are new lending apps like Tala and Upstart. People now expect ever-easier ways to manage
their money via software.

This is where banks, which should have inherited advantage in moving money around,
have it harder. It’s difficult for them to roll out buzzy new features quickly, because they
have to deal with their Jurassic “technology stacks,” notes Denis Ryan, a former banker
who’s now the chief growth officer for Showoff, an Irish firm that has built fintech apps.
Those old COBOL-fueled backends store data in disparate chunks — “they have a lot of
silos,” he notes. And it's dangerous, of course, to tinker much with the old code:
“You've got resource pain, technical pain, operational pain, risk pain.”

But a startup can do whatever it wants. There are no old systems. They’re in what
programmers lovingly call a “green field” situation. Instead of buying hundreds of
thousands of dollars’ worth of mainframe computers to store and process their data, they
just rent space on a “cloud” system, like Amazon’s. They can write code in new languages,
so they can hire nearly any eager young computer science student. And they don’t even
need to build everything themselves: When Showoff is crafting a new fintech app, it might
use an existing service to handle a tricky task — like using Stripe to process payments —
rather than trying to create that software themselves.

“That takes away quite a lot of the operational pain from the team, so that they can scale,”
he notes, “and work on the product without having to worry as much about infrastructure.”
They don'’t, in other words, have any COBOL to worry about.

The problem for banks, though, is that
while their COBOL may be stable, their
customers’ expectations aren’t.

COBOL will probably never die. But that hasn’t stopped many coders from predicting,
over and over again, that it is about to meet its doom. Indeed, the first warning that COBOL
was dead came from before the language was even released.

Page 11 of 12

“The Code That Controls Your Money”
Published by Wealthsimple Magazine

In 1960, the committee that was devising COBOL was only one year into its work — but
one member, RCA executive Howard Bromberg, was worried they were moving too slowly.
If they didn’t get COBOL out faster, he reasoned, the business world would move on!
Computer manufacturers would release their own unique languages, and business
programming would descend into the land of Babel.

So Bromberg decided, “in a fit of pique,” to send a message to the head of the COBOL
committee, Charlie Phillips, who worked for the Defense Department. Bromberg bought a
tombstone, which was topped with a granite icon of a “sacrificed lamb,” and had “COBOL”
carved on it. (“What kind of a name is that?” the tombstone-maker asked him.)

Then Bromberg put the tombstone in a crate and shipped it off to Phillips at the Pentagon.
“There were rumours all over the industry that COBOL was dying,” as Grace Hopper later
recalled.

60 years later, the tombstone is sitting in the Computer History Museum in Mountain View,
California, and COBOL still runs the world.

NOTE: Clive Thompson is a journalist who writes about science and
technology; his latest book is "Coders: The Making of a New Tribe and the
Remaking of the World". He is a contributing writer for the New York
Times Magazine and a monthly columnist for Wired magazine.

SOURCE: Wealthsimple makes powerful financial tools to help you grow and manage your
money. https://www.wealthsimple.com/en-ca

Page 12 of 12

https://www.wealthsimple.com/en-ca

